I recently published a work with a dearest colleague of mine on the effects of gamification in collaborative learning on learning outcomes (cognitive and attitudinal learning outcomes). The paper is published in the Journal of Computers in Education in 2024.
The paper can be accessed through this URL: …
For those who are interested in understanding the deeper layer of analysis that we went through. We provided the R scripts that were utilized to conduct the analysis, including the meta-analysis and sub-group analysis. Any queries are welcomed and please address them to taufik.ikhsan.tep@um.ac.id.
Effect size with Cohen’s d
dataset2023a$Effect_Size <- escalc(measure = “SMD”,
m1i = dataset2023a$MTreatment,
sd1i = dataset2023a$SDTreatment,
n1i = dataset2023a$NTreatment,
m2i = dataset2023a$Mcontrol,
sd2i = dataset2023a$SDControl,
n2i = dataset2023a$NControl
)
Effect size with Hedge’s g
dataset2023a$Effect_Size_Hedges <- escalc(measure = “Hedges”,
m1i = dataset2023a$MTreatment,
sd1i = dataset2023a$SDTreatment,
n1i = dataset2023a$NTreatment,
m2i = dataset2023a$Mcontrol,
sd2i = dataset2023a$SDControl,
n2i = dataset2023a$NControl
)
Egger test
egger_test_result <- regtest(meta_analysis_result_hedges)
print(egger_test_result)
Begg test
begg_test_result <- cor.test(meta_analysis_result_hedges$yi, meta_analysis_result_hedges$vi, method = “kendall”)
print(begg_test_result)
str(meta_analysis_result_hedges)
meta_analysis_result_hedges$effect_size <- as.numeric(meta_analysis_result_hedges$effect_size)
meta_analysis_result_hedges$se <- as.numeric(meta_analysis_result_hedges$se)
Assuming you already have Cohen’s d standard errors in a variable named ‘SE_Cohen’
meta_analysis_result_hedges <- rma(yi = dataset2023$Effect_Size_Hedges, sei = dataset2023$SE_Cohen, method = “REML”)
Forrest plot for Hedge’s g
forest(meta_analysis_result_hedges)
Funnel plot for Hedge’s g
funnel(meta_analysis_result_hedges)
Assuming your meta-analysis result is stored in ‘meta_analysis_result_hedges’
hist(meta_analysis_result_hedges$yi, main = “Histogram of Overall Effect Sizes”, xlab = “Effect Size (Hedge’s g)”, col = “darkgrey”, border = “black”)
Add a density curve
lines(density(meta_analysis_result_hedges$yi), col = “darkred”, lwd = 3)
library(ggplot2)
install.packages(“ggplot2”)
ggplot(data.frame(EffectSize = meta_analysis_result_hedges$yi), aes(x = EffectSize)) +
geom_histogram(binwidth = 0.2, fill = “lightblue”, color = “black”, alpha = 0.7) +
geom_density(color = “darkred”, size = 1) +
labs(title = “Histogram with Density Curve”, x = “Effect Size (Hedge’s g)”, y = “Frequency”)
ggplot(data.frame(EffectSize = meta_analysis_result_hedges$yi), aes(x = EffectSize)) +
geom_histogram(binwidth = 0.2, fill = “lightblue”, color = “black”, alpha = 0.7) +
geom_density(aes(y = after_stat(count) * 0.2), color = “darkred”, size = 1) +
labs(title = “Histogram with Density Curve”, x = “Effect Size (Hedge’s g)”, y = “Frequency”)
Assuming ‘dataset2023’ is your dataset
meta_analysis_result <- rma(yi = dataset2023$Effect_Size$yi, sei = dataset2023$Effect_Size$vi, method = “REML”)
summary(meta_analysis_result)
ls()
Forrest plot
forest(meta_analysis_result)
forest(meta_analysis_result, showweights = TRUE, xlim = c(-2, 2), atransf = exp)
Funnel plot
funnel(meta_analysis_result)
Galbraith Plot
galbraith(meta_analysis_result)